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ON THE ALGORITHM OF THE SOLUTION OF THE SIGNORINI PROBLEM

V.YA. TERESHCHENKO

An algorithm is proposed for solving the Signorini problem /1/ in the
formulation of a unilateral variational problem for the boundary functional
in the zone of possible contact /2/. The algorithm is based on a dual
formulation of Lagrange maximin problems for whose solution a decomposition
approach is used in the following sense: a Ritz process in the basis
functions that satisfy the linear constraint of the problem, the differential
equation in the domain, is used in solving the minimum problem (with

fixed Lagrange multipliers); the maximum problem is solved by the method
of descent (a generalization of the Frank-Wolf method) under convexity
constraints on the lLagrange multipliers. The algorithm constructed can

be conisidered as a modification of the well-known algorithm to find the
Udzawa-Arrow-Hurwitz saddle points /3, 4/. The convergence of the
algorithm is investigated. A numerical analysis of the algorithm is
performed in the example of a classical contact problem about the in-
sertion of a stamp in an elastic half-plane under approximation of the
contact boundary by isoparametric boundary elements. The comparative
efficiency of the algorithm is associated with the reduction in the
dimensionality of the boundary value problem being solved and the
possibility of utilizing the calculation apparatus of the method of
boundary elements to realize the solution.

1. solution of the generalized Signorini problem in the domain G E; with a suf-
ficiently smooth boundary S reduces /2/ to solving a variational problem for the boundary
functional

1
F@=7 {1 @eds + {10 @) gas (1.1

A S,

on the boundary of possible contact §; C S with unit internal normal vector (v). The functional
F (¢) is determined in a convex closed set /2/
V(S = (9 = W (8) | ¢ |5, > 0) (1.2)

where W, %/ (8,) (C W, (§,) is a subspace of traces of the displacement vector ¢(z), x=& on
§; that satisfy the linear constraints of the variational problem for F {g)} in the form of
the equalities

~ Ag=0in6, 19(g)ls,=0, 5,=8|5, (1.3)

and the conditions

S(pdG:SrotrpdG-———-O

G G

(the smoothness of the boundary S is here and henceforth assumed to be such that the theorem
on traces holds). By virtue of the Betti formula /5/, we have for such vector~functions

.\ G

(@ pds =0 9=0
8

(W (¢) is the quadratic form of linear elasticity theory /5/) so that the boundary norm in
W,*%4 (S;) is taken equal to /2/
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lol=1{{19 (@) qds|" (1.9
S

The unique solvability of the problem of minimizing the functional (1.l) in the set
V*(S,) is proved in /2/ and it is established that its solution ¢, V¥ (S,) is a solution
of the following unilateral boundary value problem for the displacement vector g

Ag, = 01ingG, o] 5,75 00 [ (@) + UV (u¥) g, > 0 (1.5)
@0 [t () + ) (u¥)]s, = 0, 19 () |5, = 0

Here and above (™ (u*) is a given surface stress vector in the zone of possible contact
§;. The displacement vector u* (r), z = &, which is considered to be known, is /2/ a solution
of the auxiliary mixed problem of elasticity theory with zero boundary condition for wuw* in
the zone of possible contact. The mechanical interpretation of problem (1.5) corresponds to
the problem of the equilibrium of an elastic body G resting on a certain stiff surface
without friction at points of the boundary of S; and subjected to surface stresses tV (u*)
in the zone of possible contact when there are no mass forces.

A dual variational problem to the problem of minimizing the functional F (@)on V* (S,) is
formulated in /2/ by using the Young- Fenchel-Moro transformation /4/ in terms of the surface
stresses in the zone of possible contact. The difficulty of a practical realization of the
solution of this problem is due to the difficulty in constructing the function of the dual
problem in explicit form. Consequently, the method of Lagrange multipliers is used to formu-
late the dual problem below.

2. Furthermore, to simplify the discussion we will consider the Signorini problem for a
second-order scalar elliptic operator with symmetric bilinear B (u,v) and positive-definite
quadratic form B{(v) (see /1/, p.115), in which case the results are extended in a natural
manner to the formulation of the Signorini problem for the linear elasticity theory operator
of Sect.l.

The convexity constraint is given by a closed convex set of scalar functions (similar to
(1,2)) defined on the whole domain boundary

VE(S) = {o= W (S) v s > 0}

where W, (8§) = W,* (S) is a subspace of traces of the scalar functions v in S that satisfy
the equation A4y = (0 in G; the norm in the subspace W;‘/“ (S) is defined /6/ by the expression
(similar to (1.4))

ol s={{ o, ovds} @2.1)

(here and henceforth, unless otherwise stated, the integration is over the boundary S), and
vy, = 0/dvy is differentiation with respect to the direction of the conormal v, (the subscript
A is henceforth omitted).

The Signorini problem in the formulation presented in /1/ can be reduced, as in /2/, to
a minimization problem for the functional

Fol@) =", 0.9pds + § durqds (2.2)

in the set V* ().
The solution @, V* (S) of the variational problem for the functional F,(¢) is the
solution of the following unilateral boundary value problem (similar to (1.5)):

Age =0in G, ¢, s> 0, [6.9+ du*1s >0 (2.3)
@ [0vpy + du*ls =0

Since F, (¢)is a strictly convex functional and V* (S)is a convex closed set in W;": (S),
the problem in finding

inf 7y (¢) 2.9
= V*(S)
is solvable uniquely /7/.
We will now formulate the dual problem and we present (with or without proof) assertions
corresponding to theorems for the equivalence and existence of a saddle point /7/.
Let
AWS)={1res W ($), >0}
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be a set of Lagrange multipliers such that

{ 0, osV*(S)

sup {— A, p) == b pEVHS)

A=A(S)

where (> is the duality ratic in W3’ (§) x W3 (S).
Then the problem of determining
infg supy, {F (9) + {—A, o>} (2.5)

{the direct formulation) is equivalent (as is confirmed directly) to the initial problem (2.4).
Here and henceforth inf, and sup, mean

Inf, sup
1)
gawlhg MEAS)

Following /7/ (pp.214-216), it can be shown that the problem dual to (2.5) will be the
problem of determining

sup; infy {Fy (9) + {(—4, ¢>} 2.6)
and the saddle point {pg, Ay} & Wi’ () X A (S) of the Lagrangian
Lig, %) =Folp)— O @7
is determined by the condition
Fo (g0) ""<7~» 0> <X Fo (9o) — Choy 00> < Fy () — Choy O (2.8)

Vo = Wi (8), VA A(S)
@ > 0, ?~e>0=)<%,3\.,>=0

for whose proof the Hahn-Banach theorem is used /7/.
It follows from (2.8) that the relationships

ming max, L (9,1) = max, ming L (@, ) = F, (go) 2.9

hold, where the quantity Fo (@) = —'/;83,9speds is found from the generalized Euler-Lagrange
equation Fy' (@, ¢) =0, Vo W;/(S) for the functional F,(g) (2.2). Interpretation of
inequalities (2.8) shows that the argument g, of the saddle point {g,, A,} is a solution of
problem (2.3).

Indeed, it follows from the right inequality in (2.8) that the (Fréchet) derivative of
L (g, 4,) vanishes at the point g, which yields, for sufficiently regular functions ¢ and A

§ovepds + fowrpds — (apds =0, vpewrn (2.10)
It hence follows that &y@y -+ dvu* = A, >> 0; the inequality
Qo 90> > Choy 9d, VA0 @.14)

follows from the left ineguality in (2.8).

Consequently, since <(hy, 9o =0, we have @,>0 and g, [0, -+ &u*] =0.

Therefore, the conditions on the boundary in (2.3) are satisfied, and satisfcation of
the equation Ag,=0 in G follows from the trace belonging to ¢, |s = W3 (8). We also
note that the equality dvgo + 6yu* = Ay resulting from (2.10) yields an interpretation of the
Lagrange multiplier A, which has a definite mechanical meaning in the Signorini problem for
the linear elasticity theory operator {see below).

We will henceforth examine a solution of the dual problem {2.6) in the form

max) mingL (g, A) (2.12)

3. The following algorithm is proposed for solving problem (2.12).
19, For fixed A >0 (A= dy,u*) the problem ming L (¢, A) is solved, which reduces to
sclving a variational equation of the form {2.10)

Covenpds + Sourpds — (apds=0, Vpewin(es) 3.1

The approximate Ritz solution

Pan =@y (A, ) == ig; a; (M) B, (x), z=6 (3.2
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is constructed in coordinate functions in the form of double-layer potentials
- é ;
ﬁ;(x):—(4n)‘§—65—I‘(a:,y)1pi(y)dsy, i=1,2,...

where {¥;} is a sequence of fairly smooth linearly independent functions defined at the
points ye& §; completeness of {{;} in L,{S) is assumed. The functions Bu(x) are allowable
functions of the problem ming L (p, A) by virtue of the known /8/ properties of the boundary
potentials, namely

Api (@) =0, V2= G, Bils=P (@), Vy= S

Therefore P; |s & Wi (S) and the approximate solution (3.2) has the following form at
points of the boundary S:

7

@ p)= 3 @ (M) (v)

i=1

We obtain a system of linear eguations to determine the coefficients a; (for each fixed
A>0, As= dyu*) from (3.1)

S a, § o ds = — §owurpe ds + (s, 33
i=1

k:i,-,“n

The matrix of this system with the elements

S by ds = S 08Py ds = [Bys Brlon, s

where [, s 1is the scalar product in W;”(§) corresponding to the norm (2.1), is symmetric
and positive-definite. Therefore, system (3.3) is uniguely solvable. Hence, the first part
of the algorithm is realized.

2°. The problem max;L{g, A} is solved, where L {g,,A)=min, L (p, &) and @ =9 (1) is
the argument of the saddle point for a fixed Lagrange multiplier A > 0; ¢ = W5 (S).

Let us calculate L {p, A. For ¢ = ¢ we obtain from (3.1)

S Ovprgy ds = S My, ds — S dvurgy ds (3.4)
We then have from {2.7)
L(prs M) =1/, S g ds - S du*gy ds — S Agpds =
— /2 § 0upas, ds = mingL (g, )

Therefore, taking account of Eqg.(3.4) the dual problem (2.12) reduces to minimization
problem

24

maxaL (p, A) == maxy {— g (On @) — S ¥, ds)} = (3.5)
— Yy mim, (<% Ay — S Dvit*epy, dS)

where ¢, are determined from the variational Eq.(3.1) for the set {A}, A >0, & 5= du*.
We will use the notation

D) = @ — [ durgds (@ (1) =0)
By virtue of (3.4) (for sufficient regularity of )) we have

D)= dupards =] g |3 5>0, V0

(see (2.1)), i.e., @ (1) is a strictly convex functional and A (S8) isa closed convex set /7/
in dual space W,/ (S). Therefore, the problem min, @ (A) is uniquely solvable.

It can be established that min, @ () = @ (A,).

Indeed, it follows from the left inequality in (2.8) for the function L (¢, A} with
P = Q¢ that max, L (p,, A), which means (by virtue of (3.5)) alse min, ® (A) is achieved
at the point A, A (S) and equals
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D (hy) = S Ov@oPo ds

Finally, taking account of the factor — Y,in (3.5), we obtain

maxy, mingl (@, A) = — 1/, S Ovpepo ds = F oy ()

which corresponds to (2.9).

To solve the problem max, L (¢, A), which reduces to the problem min, ®@ (1), an algorithm
of the descent method is used, which is a generalization of the Frank-Wolf method for the
case of convex constraints A >0 (/7/, p.130). The passage from the iteration A, to Xi,,, is
realized as follows: on selecting the initial approximation A® >0

Amit =My + Oy A >0, m=1,2,... (3.6)

For A=A, >0 let the Ritz approximations {@a,n}n=1:-.. be constructed according to Sect.
1°. In order for the pair {@i .. Am} to be an approximate saddle point L (g, 1), satisfaction
of the following inequality is necessary (analogous to (2.11))

<}"m7 (Pkmn> < <7"v (thn>v Vi = A (S) (37)

which ensures satisfaction of the left-hand side of relationships (2.8) defining the saddle
point. The right-hand side of this relationship is satisfied since @, is a Ritz approximate

solution of the problem of finding ming L (¢, A,). The descent direction p,, and the step p, in
the iteration process (3.6) are selected according to well-known recommendations (/7/, p.227).
First B, & A(S), is determined such that inequality (3.7) is satisfied in the form

(@m0 Br—B><O, VB A(S)

in particular for f = A,. The step
Om = min (11 “'ct;l <(Pkmm ﬁm— ;’m>}v co>0 (pm¢ 1)

is then calculated, where ¢y is a fairly large fixed number. Therefore, we obtain the
iteration A,, according to (3.6) for the descent direction p, =B, — A, and the step pm.
The condition to halt the iteration process (3.6), which is of practical interest for solving
the Signorini problem of elasticity theory in Sect.l, is presented in Sect.5.

4, wWe will now justify the algorithm proposed. It follows from the constructions
presented in Sect.3 that for each fixed A& {A} approximations ., of the form (3.2) are
approximations of the Ritz process of the problem ming L (¢, A). Indeed, it is sufficient to
confirm satisfaction of the conditions to which the basis functions are subject in the Ritz
process (/5/, p.96). It should here to taken into account that linearity of the integral
operator of the boundary double~layer potential type and the assumed completeness of the
sequence {¥;} in L, (S) ensure the basic character in L, (§) for the sequence {f;}. Thus:

a) For any n, the elements f,, f,, ..., B, are linearly independent;

b) The traces f;ls are elements of the energy space of the functions W,*%(§); indeed
(see Sect.2), the subspace W, */ (S) allotted to the norm (2.1) can be considered as an energy
space of traces in S for sufficiently smooth functions satisfying the equation A¢ =0 in G;

c) The sequence {B;|s} 1is complete in the norm in W,**(§); this follows from the

completeness of {Bilg} in L, (S) and positive-definiteness of the form Savcpqaas on the basis

of known results (/5/,p.366, Theorem 1).

According to Sect.2, the mingl (9, A) (for fixed A) is achieved at the point g = W; ” (S).
Then by using the results on the convergence of the Ritz process from /5/ (on the basis of
a)-c)), it can be asserted that the convergence

Hm | gr, — s s, s =0 (4-4)

holds.

According to /7/, the iteration process (3.6) of the solution of the problem of finding
max;L (g, ) converges so that

Lim U h Dol 8 =0, -bi 8 =10, ot “.2)

where A, is the argument of the saddle point {@,, Ao}.
A theorem on the convergence of the algorithm is proved on the basis of (4.1) and (4.2).

Theorem. A family of problem mingl (9, Am) and a set of approximate solutions (‘P}AmnE
{®n (Mm, 2)}n, m=1,a,..., Such that for each fixed A= Am = {Am} the convergence Pr,n —> @a,  oOccurs
as n-—+o0 in the sense of (4.1), correspond to the sequence of iterations {Am}m=12,.... Then
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if Am-—>Ayas m — o in the sense of (4.2), then ¢, —> % as m— x in the norm in
w3 (8).

Proof. We obtain two equalities, respectively, from (2.10) for ¥ = ¢ — @y and from
{(3.1) for p=¢ — P, + We set ¢ = Pry in the first equality, and ¢ = ¢, in the second and

we subtract. We then obtain

§ 00 — 0v01_) (9o — ) ds = § (o — ) (0 — 2, ds {4.3)

By virtue of (2.1) the left-hand side of (4.3) equals | @ — ¢» I, s

m
Using the generalized Schwartz inequality for the right-hand side of (4.3}, we obtain
the inequality
Yoo =, I s <hho— Al s

from which on satisfying (4.2) it follows that lim | ¢, — @, fhus = 0 as m — oc,

The convergence ¢, — % as m— x also occurs in the norm in the Sobolev class of
functions W, (G) to which the generalized solutions of boundary value problems for second-
order equations belong.

Indeed, for functions satisfying the equation 49=0 in G the equation

B (¢} = S 2.00ds=|of}, ¢

follows from Green's formula and (2.1).
The estimate /5/

B(@)?ﬂw!ﬁ,a, ¢>0, ﬁ‘ﬂi,’c‘—'-ﬁ‘!bv,wa)
holds for the positive~definite quadratic form B (g), therefore from |o|}, s=>c|¢f s and for

I%0 = @5 ly,, s — 0 (m — o) the convergence g, ®,, h,g—0 follows as m — co.

The algorithm constructed can be considered as a modification of the well~known algorithm
{see /3, 4/, say) for finding the saddle points of Lagraggians by Udzawa-Arrow~Hurwitz since
for alternate utilization of the Ritz approximation {@,}ne; .. and the iterations {hmYm=12,...
the value of the functional L (@i n,Am) tends to L (pe ho) as m,n-—co, where {@os Ao} is
the saddle point of the Lagrangian L (g, A).

We also note that by virtue of the equation A = dv@an + Ovu* which follows from (3.1)
where @, ls = Za; (A) ¢; (y), the expansion of the multipliers A in a system of functions {01}
is of definite interest for an appropriate foundation. A similar algorithm for constructing
approximate values of the saddle points is proposed and proved in /9/.

In general the possibilities of applying the proposed algorithm are constrained to
boundary value problems for which Green's function exists, but if it is taken into account
that Green's function is required in explicit form to obtain a solution at points of the
domain in the boundary values found, then contact problems of linear elasticity theory in
which the displacement and stress distribution must be found in the contact zone are a possible
domain of application of the algorithm. For such problems satisfaction of the conditions
imposed on the data of the problems for which Green's function exists /8/ is sufficient, and
its construction in explicit form is not essential.

In connection with this remark we note that the duality different from the algorithm
elucidated, which utilizes Green's function for the integral relation of the contact pressure
with the displacements in the contact zone, is represented in /10/ for the solution of contact
problems of elasticity theory.

5. The constructions elucidated in Sects.2-4 are extended to the generalized Signorini
problem for the linear elasticity theory operator (in the formulation elucidated in Sect.l,
see /2/ also)}, which reduces to the problem of minimizing the boundary functional (1.1) in
the set V*(S,). The solution @, =V*(S,) of this problem satisfies the variational in-
equality /2/

S t (@) (v — @) ds 2> ~ S“V) (N (v —@p)ds, YveV*(S)
8y 8

Since the set V*(S,) (see (1.2)) is a closed convex cone /2/ with apex at the origin,
this inequality is equivalent /3/ to the relationships

(g vas> — (s vds, Vveve(s,
gt(ﬂ (o) 9o 85 == — S ) (u*) @pds, @, == V* (85)
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(here the integration is over §,). By virtue of (1.4) S“‘” (u*) @,™Mds > 0 follows from the

second relationship. Since @, |5 >0, this ineguality id satisfied if the given stress
vector satisfies the condition ¥ (u*) s <0 in the contact zone, which corresponds to the

solvability condition for the variational problem for the functional (1.l1) in the set V*(S,)
/1/:

it(”) ¥ pds <0, Vp=R[]V*(S)

where R, the subspace of stiff displacements, is thekernel of the quadratic form of linear

elasticity theory 2SW(tp)dG, and the equality sign in this condition will hold only if p is

vector of the bilategal displacements of points of the contact boundary S;.

The mechanical interpretation of the Lagrange multiplier i, (see Sect.2) follows from
the equality ™ (gg) + t®) (u*) = A,. Namely, since ™ (u*) <0 and Xe>>»0 (see (2.8)}, 1, is
the intensity of the distributed normal reference reaction at points of the set {unknown a
priori} S§,°C 8, in which body contact with the reference surface exists and g, [go = 0.

We will investigate the possibilities of the algorithm constructed in Sects.3, 4 from
the viewpoint of determining the stress in the zone of possible contact §,. For a certain
A=2Am>0 let the Ritz approximations {@._ n}n=1,2.. Of the solution of the problem mingyL (g,
Am) Dbe constructed from a variational eq_uation of the form (3.1) in which the derivatives
8yga and Hau* are, respectively, the yectors of the surface stresses ™ (@) and t™ (u*).
wWe show that the sequence {tm (q}’-m")}""}' B converges as n, m — % in the sense W, (S,)

==y, &

to ™ {gy)—the stress vector in the contact zone S; that corresponds to the exact solution
@, = V* (§;) of the unilateral variational problem for the functional (1.1). Indeed, accord-
ing to (4.1), | o, — Py | ~»0 holds for each Am as n— =, where the norm is defined accord-
ing to (1.4). 'I'hen by virtue of the imbedding theorem W,*" (S) C W, (S) and the estimate
/2, 6/ 110 (@) 5, <& | @ bypso @3>0 we have | (g ) —t0 () [y 5, —0 a8 1 — oo,
Furthermore, since the equality k¢ — Am = 1% {@g) — ¥ (g, ), holds, then from {(see {4.2))

2 — &m oy, 8,—0 as  m-—» oo, the convergence of

T (o) — 4 (@, ) | 7>

as follows,

Remark. Certain complications of a technical nature are caused by the condition t® @ s,
0 ({see (1.3}) to which the allowable functions of the variational problem for the functional
(1.1) should be subjected. But if this functional is taken in the form (first integral over
all S)

Fi @) =5 é ' (@) @ ds + 5 O (%) @ ds

;)

the condition mentioned is a natural condition for the minimization of F (p).

Realization of the proposed algorithm was examined in an example of the classical plane
contact problem of the insertion of an absolutely stiff stamp into an elastic half-plane
(without taking account of friction). The normal stress vector in the contact zone ™ (),
which is considered known and should satisfy the condition ™ (u) ls,<<0 in the formulation of

the unilateral boundary value problem (1.5) (the vector t™(uw is not associated here with

the formulation of the auxiliary mixed problem of elasticity theory for the displacement
vector u* see Sect.l), was here given thus: tM = —p, vhere p{ >0 is a function of the
normal contact pressure under the stamp with definite surface geometry of the stamp in the

contact domain during the action of a force P= Sp(y) dy, on the stamp, where the integration

is over the width 2 of the possible contact zone that is symmetric relative to the stamp

axis /11/. For certain surface shapes constraining the stamp base, the functions p(y) obtained
by methods of the theory of complex variable functions are presented in /11/. For a given
vector t™(w= —p in the formulation of the above-mentioned contact problem, numerical
analysis of the algorithm elucidated in Sect.3 for the solution of this problem reduces to

an analysis of the approach of the integral

N R A LU BRSPS (5.1)
sl
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to zero as the number of iterations m and the number of Ritz approximations n increase.
Theoretically the convergence <¢Kmn,lm>—»<¢o,lw = 0 holds as m,n-> 00, since from the

convergence ¢Mnn_q¢1m,vxm e A (S;) in the sense of (4.1) and the convergence i, — Ay, in the sense
of (4.2) as well as the convergence %, — %o in the sense of W}/ (S;) (see the Theorem of
m

Sect.4), there follows the above—mentionégnconvergence in the sense of the ratio of the
daulity in wW¥/(s)) x W;" (8,).

In constructing the Ritz approximation, the contact boundary §1 was approximated by
isoparametric curvilinear second-order boundary elenents (BE). The construction and foundation
of the boundary-element approximation of the variational problem for a boundary functional of
the form (1.1) by using basis functions of the double-layer boundary potential type is presented
in /12/.

The condition to terminate the iteration process was given thus

n

e
S| § o2att™ @) —pras, | <e (5.2)
=1 As;

where ¢ is agivenpositive number governing the required accuracy of the iteration process
in M, for a fixed number n of BE As;.

For a circular stamp contained within the limits of the possible contact zone S; of the
curve f(y) = y¥/(2R) (under the assumption that the radius of the stamp base is large compared
with the size of the contact area), the function of the given contact pressure p (y) was taken
from /11, p.65/. Two modifications of the contact boundary partition into BE were examined
for the greatest assumed depth of stamp insertion x = 0.02R (along the stamp axis of symmetry)
and a corcesponding possible contact zone halfwidth a= 0.2R. For six elements and g== 5 x {02
in condition (5.2), the greatest error (at the point y=0 on the stamp axis of symmetry)
in the values of p and “V)W1mw was 0= 16% (m = 14). The following values of the error were

obtained for twelve elements:§ = 14.5% for e = 5x 102 (m=18); 8=8% for e=  10-2 (m = 29);
6 =~1.5% for e= 1{0"% (m = 55); the calculations were performed on an ES-1022 computer. It is
established that an increase in the number of iterations m affects the decrease of & to a
greater degree than an increase in the number n of BE.

The example considered is substantially confirmatory for the proposed algorithm in the
sense that the solution p (¥) of the contact problem by the method of the theory of complex
variable functions /11/ is compared with the solution t* (@,.) of this problem as a unilateral

variational problem for the boundary functional (1.1).
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